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Calculation of the Electron Distribution in the Hydrogen Atom for
Different Values of the Temperature Factor

By T. R. R. McDoNALD*
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(Received 12 July 1955)

Tables are presented showing the effect of thermal vibration on the electron distribution in the
hydrogen atom, both in three dimensions and in projection. The calculations, which were performed
on the EDSAC, are based upon the assumption that the charge density in a stationary atom is
adequately represented by the square of the normalised (1s) wave-function. In the three-dimensional
case, ¢(r), the electron density in a vibrating atom, and n(R), the fraction of the electron contained
within a sphere of radius R measured from the centre of the atom, can be expressed explicitly as
functions of the temgperature parameter B. It is found that the atom is quite diffuse, a sphere of
radius 1-0 A, for example, containing only about 70% of the electron. In view of this, due care
must be taken in interpreting the results of electron counting on electron-density maps computed
from X-ray diffraction data. The magnitudes of the errors introduced by termination of the Fourier
series are also discussed.

The results of these calculations agree reasonably well with recent measurements of the electron
density. We conclude tentatively that the electron distribution in hydrogen atoms bonded to
carbon, nitrogen or oxygen, or weakly hydrogen-bonded to nitrogen or chlorine, is adequately

approximated by the electron distribution in an isolated atom.

Introduction

In a recent publication, Higgs (1953) has discussed the
effect of thermal vibration upon the electron distribu-
tion in the carbon atom, and has demonstrated the
very critical nature of the dependence of the peak
density on the amplitude of thermal vibration, espe-
cially at low temperatures. In the present paper, it is
proposed to investigate the effect of thermal motion
on the electron distribution in the hydrogen atom.
In view of the fact that the technique of X-ray dif-
fraction has advanced to the stage where it is possible
to measure the electron density in hydrogen atoms
with fair accuracy, it is of some importance to know
what values to expect under different experimental
conditions.

* Present address: 23 Balcarres Street, Edinburgh 10,
Scotland.

We shall assume in what follows that the charge
density in a stationary atom is adequately represented
by the square of the normalised (1s) wave-function,
that is, we shall ignore the perturbations of the
electron cloud due to bonding. Justification for this
apparently drastic simplification is afforded by recent
experimental results. It is well known that the electron
distribution in heavier atoms is relatively little affected
by bonding, the departures from spherical symmetry
being in general very small (apart from the eifects of
anisotropic thermal vibration). Recent accurate X-ray
diffraction results suggest that this may also be true
in the least favourable case of the hydrogen atom.
It has been generally found (Table 9) that, if a spheri-
cally symmetrical distribution of electron density is
subtracted from X in a covalent bond H-X by the
technique of the F,— F, synthesis, the resultant distri-
bution has, on the average, spherical symmetry, and



T.R.R. McDONALD

the peak height and electron content are not very
different from the values expected for an isolated atom
calculated on the basis of the theory developed in this
paper. This point will be discussed later with particular
reference to Table 9.

While the deficiences of this simple approach are
fully realized, the assumptions involved are valid to
the extent that they form a genuine basis for the
interpretation of the experimental results.

Three-dimensional analysis

For any spherically symmetrical atom, the number of
electrons n(R) contained within a sphere of radius R
measured from the centre of the atom is given by

R R
n(R) = So dourg(r)dr = So vndr, (1)

where g(r) is the electron density at a distance r from
the centre. U(r) = 4mr2g(r) is the radial distribution
function. For an atom with thermal motion, we have
for p(r),

o(r) = S ‘f(s) exp (—Bs?) exp (—2nir-s)dv*, (2)

where f(s) is the atomic scattering factor, and s =
2 sin §/A. B is a constant related to the amplitude of
thermal vibration:

B = 2n242 5

where %2 is the mean square displacement of the atom
from its mean position.

Equation (2) is normally evaluated as a Fourier
series:

1
Q(CC, Y, z) = T] %‘%‘%’f(hlcl) exp (——B82)
x exp {—2mi(hz+ky+1z)} . (3)

In the case of the hydrogen atom, g(r) is given in
analytical form as the square of the normalized wave-
function. For a stationary atom in the ground state,

o(r) = ¥2(r) = (1/ma®) exp (—2rja), a = 0-528 A . (4)

We shall assume that this also gives the electron den-
sity in an atom at absolute zero, though this will not
be strictly true on account of the existence of zero-
point energy. This point does not affect the analysis
which follows, but in the comparison of observed and
calculated densities (Table 9) it may be that the values
of B which have been used, which are those appro-
priate to carbon atoms etc., should in fact be greater
because of the greater zero-point movement of the
hydrogen atoms.
The distribution function is, in this case,

U(r) = 4nr?yp*(r) = (4r?/a®) exp (—2r/a) , 5)

and the fraction of the electron within a sphere of
radius R is
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E
n(R) = 4 S r2 exp (—2rfa)dr;
0

ad

" A(B) = 1—-(@2a?) [B2+aR+3a?] exp (—2RJa) . (6)

The electron density in an atom with thermal motion
will be obtained by convoluting (4) with the Fourier
transform of the temperature function exp (—Bs?).
The transform is

T(r) = S:o4nsz sir;j:;rs exp (—Bs?)ds ,
i.e.
T(r) = (n/B)? exp (—n?2/B) . (7)

Convoluting (7) with (4), we have
TS
o(w) = y¥(r). T'(r)

=) Lo (=) e}
" ma3\B ,,ep a) P\ B v

Transforming to spherical polar coordinates, with the
polar axis along u, and using the spherical symmetry
of the functions,

~o (5 e (-5, (e
g(u)—;3 3) P\~ 5 . Or sin &

72 2miru 2r
X eXp|——p-+—p—cosx—— drdo .

B B
Integrating first with respect to «,

2 exp (—n2u?/B)
o(w) = V(Bm)a*u

* w2t 2\ |, . (2n%ru
b S 7 exXp —T——E—) sinh (—B—) dr.

0

Replacing # by r, we have finally for the modified
density,

2nadro(r) = F(r)—F(—r), (8)
where

Fr) = (ai:iz +r) [l—erf (Z—f—k :/z—;ﬂ exp (7—12%2-5-2;’) >

with the convention that

erf (x) = %S:exp (—y¥)dy = —erf (—2) .

Equation (8) gives the electron density in a hydrogen
atom with a temperature factor of exp[—B(2sin 6)2/42].
On putting B = 0, the expression reduces to (4). The
fraction of the electron inside a sphere of radius R
can be obtained by graphical integration of the area
under the distribution function of (8), or by exact
integration. The integration has been accomplished,
with the following result:
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n(R) = G(R)—G(—R)+erf (’;—@—2/—:; oxp (fzgz) ,
where
amr) = [R2+R (a% —a) W (% - a>]
X {1——erf (7;—2 + %g)] exp (%+7—Z%§) .

This may be simplified by making the approximations
erf (+nR[YB+VBlan)=+1, and exp (—n?Rk?/B)=0,

which give rise to a small error for the values of B
and R which we are interested in, and lead to the rather
neat result

it =1 2[-r( 2 ) -10(Z~a)]

2R B
-E“i'az—nz) » (9)

which reduces to (6) on putting B = 0.
Equation (8) may also be derived from the atomic
scattering factor,

4 (> _sin 2nrs 2r
- = g Do AT =2
@) ad So r 27rs exp( a) @

X exp(—

ie.

f(8) = 1/[1+(mas)?? . (10)
This is the scattering amplitude for the ground state
of the hydrogen atom at absolute zero. McWeeny
(1951) finds that the contribution of the (1s) orbital
to the atomic scattering factor is given by

_ of 7 \Si(=)
7018) = W (5cs) 2
where
o 2z
= -t —
Si(x) = So te ‘sin atdt = el

Substituting z = mas, (Ny,)? = u®e®/n, we obtain (10).
For an atom in thermal vibration, we have for the
electron density:

b 47782
olr) = S [1+ (mas)2

sin 2nrs
2mrs

exp (—Bs?)ds. (11)

Integration of this expression leads to equation (8).
The values of the electron density in three dimensions
were first calculated by means of equation (8), and the
results were later checked by numerical integration of
(11) on the EDSAC (Table 1). Using the result

o a /(® a?

e —pt) sin (ayt)dt = — (—)ex <——),
So xp (—pt) sin (a}/?) 2pr P\ =%
we can write equation (11) in the form of a differential
equation

THE ELECTRON DISTRIBUTION IN THE HYDROGEN ATOM

Table 1. The three-dimensional electron densily as a
Sfunction of the temperature parameter B and the distance
r~from the centre of the atom

(Values are in e.A-3)

B(A)
\ 0:00 025 0-50 0-75 1-00 1-25 1-50
r(d)
00 | 2-162 1-14,* 0-89,* 0-74;* 0-64,* 0-57,* 0-51,*
01 1-481 1:054 0-847 0715 0-622 0-551 0-495
02 | 1-014 0856 0-728 0633 0-561 0-504 0-457
03 | 0694 0639 0-578 0-523 0-475 0-435 0-400
04 | 0475 0458 0-435 0-408 0-382 0:357 0-335
0-5 0-325 0-322 0-315 0-306 0-294 0-281 0-269
06 | 0223 0-224 0224 0-223 0-219 0-214 0-208
07 | 01583 0-156 0-158 0-159 0-159 0-159 0-157

* Calculated for r = 0-01 by equation (8).

Table 2. The three-dimensional distribution function
4mrig(r)

0-00 025 050 075 1-00 1-25 1.50

0-0 | 0:000
0-1 | 0-186
0-2 | 0-510
0-3 | 0785
0-956
1-022
1-008
0-939
0-840
0-728
0-615
0-510
0-415
0-334
0-265
0-208
0-162
0-125
0-096
0-073
0-056

0-000
0-133
0430
0-723
0-921
1-012
1-016
0-958
0-865
0-755
0-642
0-534
0-437
0-352
0-280
0-221
0-172
0-134
0-103
0-078
0-060

0-000
0-106
0-366
0-654
0-874
0-991
1-015
0-972
0-887
0-780
0-667
0-558
0-458
0-371
0-296
0-234
0-183
0-142
0-109
0-084
0-064

0-000
0-090
0-318
0-591
0-821
0-960
1-007
0-980
0-905
0-803
0-692
0-582
0-480
0-390
0-312
0-247
0-194
0-151
0-116
0-089
0-068

0-000
0-078
0-282
0-538
0-768
0-923
0-991
0-982
0-919
0-824
0-715
0-605
0-502
0-409
0-329
0-261
0-205
0-160
0-124
0-095
0-072

0-000
0-069
0-253
0-492
0-719
0-884
0-969
0-977
0-928
0-841
0-737
0-628
0-523
0-429
0-346
0-276
0-217
0-170
0-131
0-101
0-077

0-000
0-062
0-230
0-453
0-673
0-845
0-943
0-968
0-932
0-855
0-756
0-649
0-545
0-448
0-363
0-290
0-230
0-180
0-140
0-108
0-082

w»—nTu--p—-»—u—-»-u—-hTHTlQQQOQQ

S©oUS b oSS bk

Table 3. The fraction of the electron n(R) contained
within a sphere of radius R as a function of R and B

B(A»

\ 000 025 050 075 1:00 125 1-50

R(A)
07 049 047 045 043 041 039  0-37
08 | 058 056 054 052 050 049  0-47
0-9 066 064 063 061 059 057 055
1-0 078 071 070 068 067 065 064
11 078 077 076 075 073 072 071
1-2 083 082 081 080 079 078 077
13 087 08 085 084 083 082 0-81
14 | 090 08 08 088 087 086 085
1-6 094 094 093 093 092 092 091
1-8 097 096 096 096 096 095 095
20 098 098 098 098 097 097 097

0\ m\3 22
—2a? (= L
(1 nla 3B) o(r) (B> exp( B ) s (11la)
which is suitable for numerical evaluation on the
machine.
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Effect of series termination

The values of g(r) and n(R) obtained by the use of
these equations strictly apply only to Fourier syn-
theses which have been computed with an infinite
number of terms. This is not the case in practice, of
course, and the measured values will depend to a
certain extent upon the limit of the observations, the
error being greater the smaller the value of B. We
must therefore enquire under what conditions the
results of the present calculations are applicable. A
rigorous treatment will not be attempted ; the problem
may conveniently be tackled by considering the effect
of series termination upon the peak electron density.
The peak density p(0), corresponding to termination
at ¢ = A is given by
PO Bs?)ds. (12
e = 4 s eR (~Be)ds. (12

This integral is intractable, but results sufficiently
accurate for the present purpose may be obtained by

Table 4. The effect of series termination on the peak
electron density g(0) in three dimensions

(0(04) is expressed as a fraction of the values in Table 1)

B(A3)

0-25 050 0-75 1-00 1-25 1-50
1-0 0-64 0-74 0-81 0-85 0-89 0-92
1-1 0-69 079 0-85 0-89 0-93 0-95
1-2 0-74 0-84 0-89 0-92 0-95 0-97
1-3 0-79 0-87 0-92 0:95 0-97 0-98
1-4 0-82 0-90 0-95 0-97 0-98 0-99
1-5 0-85 0-93 0-96 0-98 0-99
1-6 0-88 0-95 0-98 0-99
1-7 0:90 0-96 0-99

numerical integration. The values of p(0), for dif-
ferent limits 4 are given in Table 4. They are expressed
ag fractions of the peak values given in Table 1. It
is seen that the reduction in peak density is quite
appreciable for normal values of B, and in general,
in three dimensions, a correction will be necessary.
These figures represent maximum corrections, in the
sense that the corrections to g(r) are invariably less
than to g(0). The effect of series termination upon
n(R) is more difficult to assess with accuracy, but it
is less than in the case of g(r), and the values in Table 3
can probably be used with confidence for normal
experimental conditions.

Two-dimensional analysis

The extension of the above treatment to two dimen-
sions has not been found possible, owing to the in-
tractable nature of the integrals. The projected elec-
tron density in a hydrogen atom with thermal motion is
bt 2n

(

olr) = SO m exp (—Bs?)Jy(2nrs)ds ,

(13)
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where J, denotes the Bessel function of order zero.
For the special case B = 0, we have from (4),

2 (> 2
[o()ls-o = 3\ exp [ =2 (10} | an,

which can be rewritten
4 (> 2s
= 2__y2)} =
lo()ans = g5\ (st exp (=) s,

and, using the result

S F(t) exp (—pt)dt = % Ky (ap) ,
o P

where f(t) = (t2—a?)? for t > a, and f(t) = 0 fort < a,
we have for the projected electron density

2
[e(")]z=0 = ﬂ?rK1 (27:) . (13a)

Table 5. The projected electron density as a function of
the temperature parameter B and the distance r from
the centre of the atom

(Valués are in e.A-2)

B(Ay
0-25 050 075 1-:00 1-25 1-50

*(4)

00 | 1-142 092.% 0-81,*% 0-74,% 0-68,*% 0-635* 0-59,*
0-1 | 1-009 0-875 0-785 0-717 0-663 0-619 0-582
0-2 | 0-809 0-752 0696 0-648 0-607 0-572 0-541
0-3 0-624 0-604 0-579 0-552 0-527 0-503 0-481
04 0-470 0-467 0-459 0449 0436 0-423 0410
05 0-348 0:352 0-353 0-352 0-348 0-343 0-338
0-6 0-255 0-261 0-265 0268 0-270 0-270 0-269
0-7 0-186 0-191 0-197 0-201 0-205 0-207 0-209

* Calculated by means of equation (16).

Table 6. The two-dimensional distribution function

2xero(r)
B(A)
\ 0-00 0-25 0-50 0-75 1-00 1-25 1-60
r(A)

0-0 0-000 0-000 0-000 0-000 0-000 0-000 0-000
0-1 0:634 0550 0493 0-451 0417 0389 0-365
0-2 1-017 0-945 0-874 0-814 0-763 0-719 0-680
0-3 1-176  1-139 1-091 1-041 0-993 0-948 0-907
0-4 1.180 1-178 1-154 1-127 1-097 1-064 1-032
0-5 1-094 1-105 1-109 1-104 1-094 1-079 1-061
0-6 0-962 0-983 1-000 1-012 1-017 1-018 1-015
0-7 0-816 0-841 0-864 0-884 0-900 0-912 0-920
0-8 0-674 0699 0-724 0-747 0-768 0:786 0-801
0-9 0-544 0-568 0-592 0-615 0-636 0-657 0-676
10 | 0433 0454 0475 0496 0-516 0-536 0-556
1-1 0-339 0-357 0-375 0:393 0-412 0-430 0-448
1.2 0-263 0-278 0-293 0-308 0-324 0-340 0-355
1.3 | 0202 0-214 0-226 0-239 0-252 0.265 0-278
1-4 0-154 0-163 0-173 0-183 0-194 0-204 0-216
1-5 0-116 0-124 0-131 0-139 0-148 0-156 0-185
1-6 0-087 0-093 0-099 0-1056 0-112 0-118 0-125
1-7 0-065 0-070 0-074 0-079 0-084 0-089 0-095
1-8 0-049 0-052 0-055 0-059 0-063 0-067 0-071
1-9 0-036 0-038 0-041 0-044 0-047 0-050 0-053
2.0 | 0-026 0-028 0-030 0-032 0-035 0-037 0-039
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K, is a well tabulated function (see for example
Watson, 1922, p. 698). The values in column 1 of
Tables 5 and 6 were calculated by means of this
equation. Equation (13) can be written in the form
of a convergent series, but, as the functions involved
are not well tabulated, the series is not convenient
for accurate calculation. The remaining columns in
Tables 5 and 6 were obtained on the EDSAC as the
solutions of the differential equation

(l—n2a2 %)29(7') = (g) exp (— %’f) . (14)

which can be obtained from (13) by using the result

S:oexp (—pt)Jo(2Y (at)) dt = %exp (—g) .

In two dimensions, #(R) is given by
R
n(R) = S 2gro(r)dr . (15)
o

Table 7 was obtained by graphical evaluation of this
function.

Table 7. The fraction of the electron n(R) contained
within a circle of radius R as a function of R and B

B(A?)
0-00 0-25 0-50 0-75 1-00 1-25 1-50

N
0-7 0-65 0-63 0-62 0-60 0-58 0-57 0-55
0-8 0-72 0-71 0-70 0-68  0-67 065 0-64
0-9 0-78 077 076 075 074 073 0-71
1-0 0-83 0-82 0-81 0-80 0:79 0-78 0:77
1-1 0-87 0-86 0-86 0-85 0-84 0-83 0-82
1-2 0-90 0-89 0-89 0-88 0-88 0-87 0-86
1-3 0:92 0-92 0-92 0-91 0-91 090 0-89
14 0-94 0-94 0-94 0-93 0-93 0-92 0-92
1-6 0-96 096 096 096 096 096 0-95
1-8 0-98 0-98 0-98 0-98  0-98 097 097
2:0 0-99 0-98 0-98 0-98 0-98 098 0-98

We can derive an analytical expression for the effect
of temperature on the peak electron density. In two
dimensions, o(0) is

® 2
o) =, (G (B

which can be reduced to a tabulated form

1 )
00) = 5 [1+beBi(~b)], (16)
where
co ,—¢
—~Bi(~b) =\ - dt (Jabnke & Emde, 1945, p. 1)
vh

and b = Bla*n2.

The effect of series termination may be conveniently
discussed in terms of this equation. For a finite upper
limit A4, equation (16) becomes

THE ELECTRON DISTRIBUTION IN THE HYDROGEN ATOM

b .
0(0) = 0(0)— (3) B~ b+ BA%)]
b exp (<B4

“mat brBar - 17

The magnitude of the error introduced by limiting the
series may readily be determined for any particular
values of A and B by evaluating the two correction
terms. Table 8 was obtained in this way. The figures

Table 8. The effect of series termination on the peak
electron density g(0) in two dimensions

(0(0)4 is expressed as a fraction of the values in Table 5)

B(A%)
0-25 0-50 0-75 1-00 1-25 1-50
A@
1-0 0-85 0-89 0-92 0-94 0-96 0-97
1-1 0-88 0-92 0-95 0-96 0-97 098
1-2 0-90 0-94 0-96 0-97 0-98 0-99
1-3 0-92 0-96 0-97 0-98 0-99
14 0-94 0-97 0-98 0-99
1-5 0-95 0-98 0-99
1-6 0-96 0-98
17 0-97 0-99

have the same significance as those in Table 4. As is
to be expected, they impose less stringent restrictions
upon the experimental conditions than is the case in
three dimensions.

Numerical results

Values of p(r) calculated on the EDSAC are listed in
Tables 1 and 5, for several values of B, and for
r < 0-7 A. o(r) plotted as a function of  is shown in
Fig. 1. The effect of thermal motion is to lower the
electron density for » < ~0-5 A, and to increase it
slightly outside this range. In three dimensions, from

equation (8),
0p 1 a 2r
(58), = 1=3) =2 (-2)-
This function changes sign when r = a, thus the effect
of a small temperature increase on a stationary atom
in three dimensions is to decrease g for r < 0-528 A,

and to increase p for r > 0-528 A. In two dimensions,
from equation (13),

8], walaa(2)-m (5]

This function is zero when r = aKy(2r/a)/K,(2r/a),
that is when 7 = 0-41 A. Thus, in two dimensions,
the electron density is decreased by thermal motion
for » < 0-41 A, and increased beyond this value, for
an atom near the absolute zero of temperature. The
latter effect is rather too small to be shown in Fig. 1,
and is best brought out by the change in the radial
distribution function. U(r) is tabulated in Tables 2
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and 6 for r ranging from 0 to 2-0 A, and the cor-
responding curves for B = 0 and B = 1-50 are plotted
in Fig. 2. Thermal motion has the effect of displacing

8=0
2-0p

r(A)

&B=1-50 (b)

0 05 70 5
r(k)

Fig. 1. The electron density (a) in three dimensions, (b) in
two dimensions, as a function of # and B.

the maxima of the distribution curves in an outward
direction, and lowering them slightly.

Tables 3 and 7 list n(R) for 0-7 A < R < 2:0 A.
The values in Table 3 were obtained from equation
(9), and those in Table 7 from equation (15). It can
be seen that the atom is quite diffuse, a sphere of
radius 1-0 A, for example, containing only 70% of the
electron. The values of n(R) are relatively little af-
fected by temperature.

Conclusion

In Table 9 a comparison is made between the theoret-
ical calculations and the results of recent accurate
analyses of salicylic acid (Cochran, 1953), adenine
hydrochloride (Cochran, 1951), «-pyridone (Penfold,
1953), ammonium bifluoride (McDonald, 1956) and
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x-phenazine (Hirshfeld & Schmidt, 1956). The values
of ¢,(0) and n,(R) in the table are as read on g,—g,
maps computed from Geiger-counter data in the case
of the first four structures, and from low-temperature
(90° K.) photographic data in the case of x-phenazine.
The values of B and B which were used in the cal-
culations are indicated in the table. B is, in each case,
an average temperature factor for the whole molecule.
The ¢,(0) values for ammonium bifluoride were cor-
rected for series-termination effects, but this refine-
ment was not necessary for the other analyses.

10t
- 8=1-50
T B=0
g

0-5t
<
> (0)

0 X . . :
0 05 10 15 2:0
r(A)

1.0-

[=]
v
(%)

u(r) (e A

0 0’5 70 5 2:0

r(A)
The distribution function (a) U(r) = 4mr%(r) and
(b) U(r) = 2marg(r), for B = 0 and B = 1-50.

Fig. 2.

The hydrogen atoms taking part in the formation
of the strong O-H-0 bonds in salicylic acid and F-H-F
bonds in ammonium bifluoride have been excluded
from the table, the reason being that they appeared
abnormal. In salicylic acid, these hydrogen atoms are
deficient as regards both peak density and electron
content, while in ammonium bifluoride, although the
electron count is normal, the peak densities are low.
Similar effects have been observed by Pringle (1954)
in oxalic acid dihydrate.

The following points are worthy of note in respect
of Table 9. It is not unreasonable to suppose that
bonding would, if anything, reduce the electron con-
tent of the hydrogen atom, but, apart from the
exceptions mentioned in the preceding paragraph,
there is no indication of any such deficiency in either
0,(0) or n,(R) as compared with ¢, (0) and n.(R). In
fact, there is a slight tendency for the experimental
peak densities to be higher than the theoretical, as
though the hydrogen atoms, contrary to expectation,
had smaller average thermal vibrations than the heavy
atoms.

The tentative conclusion to be drawn from this
comparison is that the electron distribution in hy-
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Table 9. Comparison of observed and calculated values of o(0) and n(R)

00(0) (e.A72)

0-81
0-79
0-79
0-71
107
1-00
0-70
1-07
0-87
0-72
1-00
1-11
1-23
0-95
0-93
0-80
0-78
0-80
0-70
0-78
0-92¢
0-96%

* Averaged over all the atoms.

0:(0) (e.A72)

Salicylic acid 0-68

Adenine hydrochloride
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drogen atoms bonded to carbon, nitrogen or oxygen,
or weakly hydrogen-bonded to nitrogen or chlorine,
is adequately approximated by the distribution in an
isolated atom.

Finally we must bear in mind the following practical
considerations. If we wish to detect departures from
the electron content of an isolated atom, we must
count within a region small compared with interatomic
distances, that is, R should not exceed about 1-0 A.
Under these conditions, as can be seen from the tables,
the expected electron count is considerably less than
one. In view of this, it is evident that due care must
be taken in interpreting the results of electron count-
ing on Fourier syntheses, particularly in three-
dimensional work. In two dimensions, the situation
may be worse as regards overlap, but is better from
the point of view of sharpness of the peaks. In either
case, we must endeavour to strike a compromise in
practice between trying to include the ‘whole’ atom,
on the one hand, and avoiding the effects of overlap,
on the other.
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+ Preliminary results.
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